SMALL-AMPLITUDE CONVECTIVE
MAGNETOENTROPIC WAVES

B. M. Berkovskii and E. A, Lipkina UDC 532.511:538.6

The propagation of small perturbations of magnetic field, pressure, density, and enfropy in
an ideal conducting medium located in a constant and uniform magnetic field ﬁo is investiga-
ted, taking account of the effect of gravity. It is shown that there exist convective magneto-
entropic waves differing both from internal and from magnetohydrodynamic waves. The
characteristics and conditions of propagation of these waves in an ideal fluid are investi-
gated.

In magnetohydrodynamics [1] there exists the concept of the "freezing in" of magnetic lines of force.
It signifies parallelism of the changes of the vector of the magnetic field strength and an element of length
of the "fluid line."

As seen from the heat-transfer equation, which in the case of an ideal fluid reduces to the equation
of the conservation of entropy
N
ot
the isentropic lines are also "frozen in." "Freezing in" of entropy signifies the dependenece of the change
of entropy with time on the velocity of the fluid, i.e., it is understood in the same sense as "freezing in®
of magnetic lines of force, Owing to "freezing in" of the magnetic lines of force and the isentropic lines,
induced oscillatory motion in a medium should propagate as waves of the magnetic field, pressure, velocity,
density, and entropy.

+0.yS=0, (1)

This statement of the problem is described by a system of magnetohydrodynamic equations under
the following conditions, .

In a constant and uniform homogeneous field —ﬁo there is a conducting fluid having viscosity, electrical
resistance, and thermal conductivity so small that the effect of energy dissipation associated with these
values on the propagation of perturbations may be neglected. In an equilibrium state there exists a constant
entropy gradient directed along the gravitational field in which the conducting fluid is located. The gravi-
tational field is uniform and constant in time.

The solution of the problem stated here is determined by the following system of equations:

div H = 0, (2)

6@_]? :rot[Zﬁ], (3)

L+ divpr) =, (4)
p%;+p(5v)3=—\7p+ﬁrotﬁxﬁ+p§, (5)
% LyS.5=0. (6)
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In addition to these equations, the solution of the problem requires consideration of the equa-
tion of state of matter, relating p, p, and S. In a general form it can be written:

f. p. =0 (N

In a perturbed state the quantities characterizing the medium and magnetic field have the following
form: ,
H=H,+h p=p,+p, 0=p,+9, S=8,+5,
where the subscript "0" denotes constant equilibrium values of the quantities and the prime their perturba-
tion.

We will seek waves traveling along the x axis in the presence of an entropy gradient and gravita-
tional field directed along the y axis. In a gravitational field at a given entropy gradient, p, should, gener-
ally speaking, depend on y; to allow p, to be considered constant, we will consider a fluid layer of small
thickness. We will also consider that in an equlibrium state the fluid is at rest, i.e., \7(; =0, and the per-
turbations of h, p', p', S', and v_are of the same order of smallness.

The following relationship is obtained from the solution of system (2)-(6) in the zeroth approximation:

— Vs = Do8. (8)

Since we will seek the solution of system (2)-(7) in a linear approximation, we will take as the equation of
state the expression

p = ap + BS, (9)

where ¢ is the square of the sound velocity, and B is the coefficient of entropic compressibility; p in the
equation of state is understood as the sum of the hydrostatic and induced magnetic pressures.

The linearized system of Egs. (2)~(7) for perturbations with consideration of the comments made
above concerning the pressure has the form

divh =0, (10)
a;; - -
P =(HwW)v—H,(v0), (11)
dp -
- + U= O) 12
o TPV (12)
do , , 1 >
0o — = —ayp —pvS’ + —(Hwy) h +0'g, (13)
ot 4n
oS’ -
o + VS, (14)

The solution of system (10)-(14) is sought in the form of plane waves with complex amplitudes

_ﬁ:_ﬁexpiahexpi@_;—mt),

e - . e
v =vexpia,expi(kr—of),
a

(15)

S =S8 expiagexpi(kr—f),

a
p =0 expi 0, expi (.k)_; — of).
Substitution of (15) into (10)-(14) gives the following system of linear algebraic equations:

—Uh, = HOxvzr Uv, = (HOx/4npﬂ)'hz» (16)
Uh, = H,0, + Hyv,, (1m
Uu,, = (a/U) v, —(By/Uko,) iv,, (18)
Uv, = — (HyJ4np) b, -+ (gilUR) vy, (19)
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p/ = (po/U) Uy (20)
S = — (iv/o) vy, (21)
K1k h,=0, (22)

where h, = hzexp ioah, etec., and U = w /k is the phase velocity. Obviously the system breaks down into two

a
subsystems which describe different groups of waves: in one only the components h, and v, oscillate and in

the other, v, Vg by, p', and S'. As was initially suggested, entropic waves exist, From the compati-
bility condition (16) we obtain the phase velocity for the first group of waves

U=+ Hy/V 4np,,
i.e., the oscillations of hy and v, are Alfven [2].

The zero equality of the determinant of the second subsystem gives the following dispersion equation:
HyHoyy oo,
(U — o) (U? — Hi,4mp,) = (Brg/p?) U — ﬁ Byil. (23)
. 0
Eguation (23) represents a quartic equation in U, becoming quartic when Hyy = 0. The contribution of the
term with Hyy exists only in the presence of an entropy gradient. We see from Eq. (23) that the propagation
of the second group of waves is characterized by the presence of dispersion,

Dispersion equation (23) is obtained on the assumption that in the equation of state the pressure re-
presents the sum of the hydrostatic and magnetic pressures, i.e.,

If in the equation of state we understand by pressure only the hydrostatic pressure, as is usually done,
the dispersion equation for the second group of waves has now a different form:

(U2 —a) (U — H%x/‘lﬂpo) = (Hgy/‘mpo + Byg/o,0?) U2 -+ (By/pgw — g/4mp,w) HoxHOyiU' (24)
We see from Egs. (23) and (24) that in the case
D) p = pyyg, + H*/8a (25)

the dispersion is due only to the entropy gradient and the gravitational field has no effect on the existence
of dispersion;

2 p= Phydr
dispersion is observed and in the absence of the entropy gradient, it can be due only to the gravitational

field.

If the field H, is directed along the x axis, both cases coincide, and then, the dispersion eqﬁation has
the following form: -

(U2 —a) (U? — Hoj4np,) = (Byg/o,m?) U2 (26) -

In this case dispersion is observed only with the simultaneous existence of both the gravitational field and
entropy gradient.

There figuresin Egs. (23) and (24) a term with an imaginary unit. This signifies that there exists either
an attenuation or an increment of waves, which in both cases disappear if we consider waves propagating
along the magnetic field. If we consider waves propagating in the xy plane, then in the first case attenua-
tion (or increment) disappears when there is no entropy gradient and in the second case when both the en-
tropy gradient and gravitational field are absent.

It is especially important to take into account the term H? /87 in strong magnetic fields, and there-
fore we will henceforth consider that the pressure is determined according to Eq. (25).

Equation (23), when Hyy =0, has the following solution:

1 9 / I . > /
U= g (e Brglo? < Hidnp) + [/ == (o Breipgo® o+ Houldmp,)? — a (Hioj4npy) }1,2 ' (27)
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The relationships between the amplitudes of the different components are obtained from system (17)-(22):
| v

v, = — Vi h,, (28)

v, = — %hy, (29)

T T Hep (ﬁlw— i (80)
0" = (pg/U) v, (31)

S = % n,. (32)

As we see from this system, the existence of an entropy gradient gives rise to a phase shift between com-
ponents vy and vy, S' and ’vy, vy and hy by 7/2.

The phase velocities (27) characterize the propagation of the two wave groups in which the compo-
nents vy, Vg hy, o', and S' oscillate,

These phase velocities have the following form in units of Alfven velocity:

U; - Ul/VA = 1’

1 (33)

Vns = = (@ 0+ ) £ V@ Foe P48,
where the parameters ¢ = Vg/Va, 7 = Vg /Vy are introduced.

Weak and strong magnetic and gravitational fields have two limiting cases characterized by corres-
ponding values of the parameters introduced above,

1. Strong magnetic and weak gravitational fields correspond to ¢ — 0 and <« 1. In this case (U)?
=1, (UY? =0, i.e., the phase velocity is equal to the Alfven velocity (Uy)? = Vi. This limiting case re-
presents ordinary magnetohydrodynamic waves.

2. Weak magnetic and strong gravitational fields correspond to 7% > 1. In addition, we will consider
¢2 « 1. Inthis case (Uy)? =0, (U}? =7n% i.e., the phase velocity of the third group of waves is equal to the
Brunt—Vaisala velocity, and the phase velocity of the second wave group is equal to zero:

U3 = Brg/pe*. (34)

It is obvious that this limiting case gives waves which exist only when there is an entropy gradient in the
gravitational field. They are characterized by dispersion, The group velocity of these waves has the fol-
lowing form:
1 1/4
Vg = 5, % (Brvalea) s (35)

\Er %, since k|x. Components of the following form propagate with this velocity:

I
L (36)
¥ HOxg v (
P L T (38)
0
, yi
S = V.h,
(OH E™y (39)

0x

Thus, perturbations of the quantities v, Vys hy, Vg hz, p', p', and 8! propagate as plane waves in
strong gravitational fields in the presence of an entropy gradient.

The existence of plane undamped waves depends on the direction of the entropy gradient and direction
of the gravitational field.
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1. If pyg > 0, waves can propagate with velocity (34) for any relations between £ and 7.

2. If Byg < 0, the following relation must be fulfilled for the existence of waves:
C—1P>n% Le., Pyg< ~;°— (V 4mpy0. — Hy,)?. (40)
i

Thus, if the entropy gradient and gravitational field are directed in the same direction, plane un-
damped waves v, vy hy, p's p', and 8' propagate for any relations between Syg and H,. If vS, and g are
directed in opposite directions, such waves exist only under condition (40).

We need point out that the second limiting case exists only provided gyg > 0.

The results presented above were obtained on the assumption that the equation of state is used in the
formp=ap+BSorp=1/ap~p/aS. If we take into account only entropic compressibility, i.e., we set
1/« =0 in the last equation of state, and we consider 8/a =—§; te be a finite number, Equation (23) will
change to the following equation:

Hvoacl-lo‘l/("J

(VB 4+ 1)U+ VWU + V4= 0. (41)

Oo
It follows from this equation that even in the ideal case: if in the equation of state we mean by pressure the
sum of the hydrostatic and induced magnetic pressures, the existing waves attenuate when the field H; is
not along the x axis but in the xy plane,

The wave vector in the presence of attenuation is complex: k =k, + ik,, where k, characterizes both
attenuation (k, > 0) and increase (k, < 0). From (41), considering that U = ¢ /k, and k = k; + ik,, we obtain
the following values for k, and k;:

by = 2auHy,Byy , (42)
Houpo
from which we see that a decrease or increase of amplitudes depends on the direction of the entropy grad-
ient, With vS; parallel to the y axis the waves attenuate and when V8, is antiparallel to the y axis they in-
crease and

— 2
b= + 2V TH,) ]/ o093 — Brvg — n(ﬁ@l) - (43)

0
The waves will be weakly damped when k, /k, <« 1, i.e., when Hyy — 0. Such damped (increasing) waves
can exist only when

5 20,
HE < -2 ﬁ;vg o, (44)
7 (Byy)

In view of the fact that Hgy > 0, the denominator of the fraction on the right is always greater than zero;
this condition reduces to the condition w2p0 > fByyg. Consequently, if the magnetic field H is not directed
alorg the direction of wave propagation, the waves attenuate and they are possible only when 8,yg < wzpo.

If we seek waves traveling along the field, the dispersion equation for them will have the form -
Ve + DU2—Vi=0, (45)
whence
U = Vi/(Vii + D (46)

The existence of this velocity means that due to entropic compressibility alone in a constant, uniform mag-
netic field, the direction of which coincides with the direction of wave propagation, there exist, in the
presence of an entropy gradient of the gravitational field, undamped convective magnetoentropic waves
propagating with a velocity given by (45).

NOTATION

}
v

is the vector of magnetic field strength;
is the vector of fluid velocity;

is the gravitational acceleration;

is the entropy gradient in fluid;

= UQl<l',I:
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S is the entropy of fluid;

p is the density of fluid;

p is the pressure of fluid;

B is the entropic compressibility of fluid;
kK is the wave vector;

w is the wave frequency;

U is the phase velocity of wave;

vgr is the group velocity of wave;

o is the square of the sound velocity;

Vg is the sound velocity;

va is the propagation velocity of Alfven waves;
VE is the Brunt— Vaisala velocity.
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